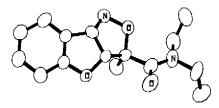
REDUCTION OF NITRO GROUPS BY YNAMINES; SYNTHESIS AND X-RAY CRYSTAL STRUCTURE OF N,N-DIETHYL-3,3a-DIHYDRO-3-METHYLBENZOFURO[3,2-c]ISOXAZOLE-3-CARBOXAMIDE

A.D. de Wit^a, W.P. Trompenaars^a, D.N. Reinhoudt^{a*}, S. Harkema^b and G.J. van Hummel^b


(^aLaboratory of Organic Chemistry, and ^bLaboratory of Chemical Physics,
Twente University of Technology, Enschede, The Netherlands)

Abstract: 3-Nitrobenso[b] furan and 1-diethylaminopropyne react thermally at $5\cdot\cdot10^{\circ}C$ to give a 1:1 addition product (5) in which one of the oxygen atoms of the nitro group is transferred to C-1 of the acetylene. The structure of the bensofuro[3,2-c]isoxazole (5) has been determined by X-ray crystallography.

Nitroalkenes¹, 3-nitrobenzo[b]thlophen², and 4-nitroisothiazole² react with ynamines (1-aminoacetylenes) to give cyclobutene and nitrone derivatives. (2+2)-Cycloaddition of the electron-rich acetylenes with the electron-deficient nitro compounds gives the cyclobutenes, and (4+2)-cycloaddition followed by rearrangement of the resulting nitronic esters accounts for the formation of the nitrones. This rearrangement involves non-catalytic oxygen transfer from the nitro group to an acetylenic C-atom³.

We now wish to report the reaction of an ynamine with 3-nitrobenzo[b]furan which gives a novel heterocycle by an alternative rearrangement pathway of the (4+2)-cycloadduct. 3-Nitrobenzo[b]furan and 1-diethylaminopropyne (1:1, benzene, 5-10°C, 16h) gave after chromatography (SiO_2 , $CHCl_3$) a crystalline 1:1 reaction product in 41% yield, m.p. 118.5-119.5°C 4,5 . MS: M $^+$ 274.13 ($C_{1.5}H_{1.8}N_2O_3$). IR(KBr): 1645 cm $^{-1}$ (C=0) and 1610 cm $^{-1}$ (C=N). ^{1}H NMR δ (CDCl $_3$): 1.20 and 1.38 (t,3H,CH $_2$ CH $_3$), 1.52 (t,3H,CH $_3$) 3.1-3.9 (m,4H,CH $_2$ -CH $_3$), 6.32 (s,1H,H-3a), 6.9-7.8 (m,4H,H $_{arom}$) ppm. 13 C NMR δ (CDCl $_3$): 12.6,14.7 and 16.6 (q,CH $_3$), 41.1 and 42.5 (t,CH $_2$), 94.6 (s,C-3), 96.6 (d,C-3a), 113.2 (d,C-5), 115.4 (s,C-8a), 122.7, 123.8 and 133.8 (d,C-6,C-7) and C-8), 167.3, 168.4 and 169.9 (s,C-4a,C-8b and C=0) ppm. The structure of the N,N-diethyl-3,3a-dihydro-3-methylbenzofuro[3,2-c]isoxazole-3-carboxamide ($\underline{5}$) was determined by X-ray crystallography.

Crystal data⁶: $C_{15}H_{18}N_2O_3$; monoclinic; space group $P2_1/c$, a=9.1946(2), b=21.3392 (8), c=14.6348(6)Å, β =90.101(3)°, Z=8; d_{calc} =1.27 g cm⁻³. The crystal structure determination is based on 3362 reflections, with an intensity greater than the

figure

standard deviation from counting statistics. Intensities have been measured on a Philips PW1100 diffractometer (CuK radiation, graphite monochromator, $\omega/2\theta$ scan mode, $3<\omega<60^{\circ}$). The structure was solved by direct methods and refined with anisotropic temperature factors (hydrogen atoms have not been located yet) to a final weighted R-factor of 11.3%. The asymmetric unit contains two different molecules which have the same conformation. One of them is shown in the figure.

The formation of the 3,3a-dihydrobenzofuro[3,2-c]isoxazole($\underline{5}$) can be explained by a (4+2)-cycloaddition followed by rearrangement of the cyclic nitronic ester ($\underline{2}$) via the diradical $\underline{3}$. With nitroalkenes¹, the analogous reaction gives nitrones cf. $\underline{4}$ by formation of N-C bonds rather than O-C bonds. The steric strain involved in the formation of a fused 2,3-dihydroazete 1-oxide ($\underline{4}$) must explain the alternative pathway with 3-nitrobenzo[b]furan⁸. The formation of $\underline{5}$ is a further example of the reduction of a nitrogroup by an ynamine^{1,2}.

Compound $\underline{5}$ represents a novel class of heterocycles, to our knowledge, and the parent benzofuro[3,2-a]isoxazole has hitherto not been reported⁹.

References and notes

- A.D. de Wit, M.L.M. Pennings, W.P. Trompenaars, D.N. Reinhoudt, S. Harkema and O. Nevestveit, J. Chem. Soc. Chem. Commun., 1979, 993.
- 2. D.N. Reinhoudt and C.G. Kouwenhoven, Recl. Trav. Chim. Pays Bas, 95, 67 (1976).
- 3. V. Jäger and H.G. Viehe, Angew. Chem., 82, 836 (1970).
- 4. The yield of 1 is almost independent of the solvent in which the reaction is carried out (e.g. acetonitrile 38*).
- Satisfactory elemental analysis of <u>5</u> was obtained.
- All relevant crystallographic data are deposited at the Cambridge Crystallographic Data Centre (C.C.D.C.)
- 7. G. Germain, P. Main and M.M. Woolfson, Acta Crystallogr. Sect. A, 27, 368 (1971).
- 8. See also accompanying paper.
- 9. A 1,3,3a,8b-tetrahydrobenzofuro[3,2-c]isoxazole has been reported by Oppolzer and Keller¹⁰.
- 10. W. Oppolzer and K. Keller, Tetrahedron Lett., 1970, 1117.

(Received in UK 7 February 1980)